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I1. INTRODUCTION

The purpose of this research is to determine the radar scattering

characteristics of an airborne target with complex structure such as an

airplane. Even though this subject matter has been studied extensively

in the past twenty years [1, 2],there is no one method that is capable

of producing efficient and accurate results under all conditions. One

has to devise different computational schemes and employ different

mathematical techniques which depend on factors such as the particular

geometry of the target, the frequency range of interest, the acceptable

error, and zomputation labor.

In the present study, we intend to develop a relatively simple

analytical model of scattering from modern airplanes for the frequency

range between 1 and 10 GH . Great precision of the theoretical model is

not required since only the smoothed curves of the calculated data

(e.g., medians over small angular region) will be of interest. Pre-

liminary calculation is to be kept to a minimum because repeated

calculations for a wide range of parameters will be perform.A for

later statistical studies in the simulation of a particular radar 4

system [2]",



bw

With the above objective in mind, we have searched the'literature

and evaluated the different techniques. It has been concludnd that the

ray-optical method [3-19]offers the best approach for tht following

reasons:

(i) This method is capable of handling target sizes that are large

compared to the wavelength.

(ii) The ray-optical method yields a final result for the scattered

field in terms of simple functions, thus allowing efficient

numerical computation.

(iii) The ray-optics approach offers a convenient means for taking

the shadowing effect into account. This is accomplished by

first locating the scattering centers, or the bright points,

and adding a simple logic in the program to indicate which of

the bright pointe are in the shadow region for the aspect

under consideration.

(iv) New developments in the ray-cptical method enable one to treat

three-dimensional problems[20-22], and to attack waveguide

problems [23-271,

2
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To solve the general scattering problem from a complex airborne

target, we follow a recent study by Wright [2]. The essential steps and

their appearance in this report are described below:

(i) The target is "resolved" into an ensemble of components, each

of which can be geometrically approximated by a simple shape.

This is discussed in Chapter 2.

(ii) The backscattered field from each component is calculated by

the ray-optics method. Details of this step are given in

Chapter 3.

(iii) The final step as presented in Chapter 4 is to combine the

contributions from each component in a proper manner, taking

into consideration the geometrical phase delay, the polarization,

and the shadowing effect. Ohce the total backscattered field

is utained, the evaluation of various radar parameters, e.g.,

radar cross section, depolarization, and glint errors [28-301

can be accomplished by straightforward computations. Results

from those computations and some comparison with experimental

data are given in Chapter 5.

3C 3



2. GEINERAL DESCR~IPTION

2.d The Targets and Coordinate 2S2)te.

In this study we w1i consider two specific targets: the BQ-34A

target drone (Figure 2.1), and the T-33 aircraft (Figure 2.2). The

components of the targets will be modeled by perfectly conducting

bodies having simple geometries which are described below:

(1) The ellipsoid (Figure 2.3), given by the equation

2 24 - + - 1 (2.1)
7 22a b c

will be used for modeling the fuselage and two wing pods.

(2) The elliptical plate (Figure 2.4), given by the equAtion

xf Y2 W andz-O (2.2)
a b2

will be used for modeling wings, horizontal and vertical tails.

(3) The open-ended , hollow. semi-infinite, elliptical cylinder

(Figure 2.6), given by the equation

2 2
x-2 + Y 2 - 1 and z > 0 (2.3)

a b

.4
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Figure 2.1. BQM-34A target drone
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Figure 2.2. 1/2 scale T-33 aircraft
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Figure 2.3. Geometry of an ellipsoid
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Figure 2.4, Geometry of an elliptical plate
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Figure 2.5. The open-end, hollow, semi-infinite elliptical cylinder
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Figure 2.6. Geometry of the ogivc
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will be used for modeling jet engine intake and exhaust duczts.

(4) The ogive (Figure 2.7) is generated by rotating an arc of a

circle of radius R about a chord located a distance R- t

from the center of the circle. The parameters (a, L) can be

calculated fro the relations:

Cos a- 1 -t (2.4)

R I 'L- 2 /R2 (R!+  t) " (2.,'.

Appropriately, truncated ogives will be used for simulating

the terminations inside the' engine intake and exhaust ducts.

To describe the relative position of each component, we will use

two types of coordinate systems: the tarset-centered coordinate system,

with variables denoted by (x,y,z); its origin is located at the center

of the ellipsoid which models the fuselage; and its three axes in

reference to the aircraft are oriented in the manner sketched in

Figure 2.1. In general, there are as many local coordinate systems

as the components that the aircraft are "resolved" into. We will 1
denote the local coordinates by (x (n),y (n),z (n )  with n = i, 2, N

9



and N being the total number of components. To describe a local coordinate

in reference to the target-centered coordinate, the following six parametezs

may be used:

(n) (n) (n)(xtn I yt ,ztn)): Position of the origin of the nth local coordi-

nate (see left wing of Figure 2.1 as an example)

(a (n), 0(n, ) : The angle a(n) represents the rotation of the

nth local coordinate abut the z-axis of the target-centered

coordinate, the angle 8 (n) about its new y-axis, and y about

its new x-axie.

All rotations are defined in a tight-handed sense. The explicit

formulas for transforming variables from one coordinate system to

another will be given in Section 4.1.

In Tables 2.1 and 2.2, the dimensions and the relative positions

of components that have been used to model the two aircraft under

consideration are presented. It should be mentioned that these

dimensions presented in Tables 2.1 and 2.2 are not exact. For example,

the data for T-33 aircraft were measured directly from a f1~ure in

reference (33]. Note that for the B4K-344 target drone, there are

12 components (N - 12) in total. Obviously, the detailed structure of

10
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an aircraft is far more complex than that. The number N 12 is chosen

merely as a compromise between the accuracy of the modeling and the labor

of computations. Our computer program is written in a such manner that

if more accurate results are desired, several additional components may

be added conveniently.

2.2 Scattering Parameters

One of the most important scattering parameters in a radar system

is the backacattered radar cross section (RCS). For an incident time-

harmonic plane wave with polarization

(i) - &AE(i) exp (-ikoA3 A r- iwt) (2.6)

where (A1"2"3) form a right-hand orthonormal system. The backscattered

field from a complex target, in general, can be written in the following form

S(aEb + a E ) exp (-ik o6 r iwt) (2.7)1 1 2 2 0o3E(s =(~ebb)+ 22s)

S(bs) represents the amplitude of the reflected wave with same polariza-

ton, while E bs) the amplitude of the reflected wave with cross

polarization. Finally, the RCS is defined as

13
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a - 4 1r2 -k- (2.8)

vher. R is the radar range. Another definition used frequently is the

RCS for the cross polarization,

IE~ha)12a - O R2 i1-2 (2.9)

The algebraic sum of a and a to sometimes defined as the total RCS of

the target, which is a measurement of the total reflected power with

reference to the incident power.

In addition to RCS, the other parameters of interest in the present

study are those describing the target-induced error in the radar system.

While extensive discussions on the radar error can be found in the

literature (e.g., Wright), we will present here only two definitions for

the orthogonal errors caused by the distortion of the reflected wave front:

RP RP
e8  -: (2.10)

0 r Fr

where e0 and e* are known as the elevation and azim-th errors, respectively.

(Pr 'P) are the spherical components of the time-average power flow p

14
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of the backscattered field

p - Re(l(bs) x (bs)) (2.11)

where Re is the real operator. In Chapter 5 the parameters a, e,, and

e wiii be computed for each set of input conditions.

¢1

<Sg
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3. SCATTERED FIELD FROM INDIVIDUAL COMPONENTS

There are four basic geometries, namely, ellipsoid, elliptical plate,

open-end elliptical cylinder, and ogive that have been used for modeling

the aircraft of interest. In this section, the backscattered field

from each of the geometries will be determined individually by the

ray-optics method. In each case, the problem will be solved in its

respective local coordinates (x ( n ) ,y ',z ( n ).

Let us denote the incident wave by (with time factor exp(-iwt) supressed)

E (E + KE exp.i r) (3.1)

where - (k,O, ) in the spherical coordinates, and () are the

aspect angles. The backscattered field can be written in the form

j(bs) - ( + *S) exp(-i * ) (3.2)

Then the problem is to determine (S0 ,S ) for each geometry mentioned

above. This will be carried out below.

3.1 The Ellipsoid

At high frequency, the main contribution from an ellipsoid (Figure 2.3)

16
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to the backscattercd field comes from the specular reflection at the

point

2
a

xs -sin e cos*
Sp

Ys sin 6 sin
p

zS  Cos e (3.3)

p

where

p./2 sin 2 e ,os2 + 2 si n 2 i2 + co2 Co2 e

which is the so-called "scattering center" for the ellipsoid. In the

discussion of the shadowing effect in Section 4.2, the position of the

scattering center relative to other components of the aircraft determines

the possiblity of a contribution to the total scattered field from the

particular ellipsoid under consideration. Thus, the information in

Equation (3.3) ill be used later. The scattering amplitudes (S.,S )

have been worked out and the results are

17
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se 2 e~k "-- exp(-12kaD)

2-- Ot-aI T2 exp(-12kaD)(3)

where

D [sin2 e cos 2  + (b/a)2 sin2  sin2  + (c/a)2 cos 2 e]1/2

(3.5)

Since the ellipsoid is a smooth body, there is no cross polarization

generated in the scattering process, and furthermore, the backscattered

field is independent of the polarization of the incident wave.

3.2 The Elliptical Plate

The geometry of the elliptical plate is shown in Figure 3.1. If

the minimum radius of curvature of the edge is large compared to the

vavelength, I.e.,

k b2 /a >> 1 (3.6)

then the far-field coefficients S and % for vertical (E )  0 0) and

horizontal (i) ) polarizations can be asympttically expanded in a

power series of The domiuant terms of these series come from

18
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optical rays which are backscattered from the scattering centers P1si(Xsi,YsO)

and Ps2(Xs2,Ys2 ,0) on the edge of the plate. The coordinates of these two

points are given by

YSl 's2 u-Ys-

SSl S2 -O (3.7)

where

A- [cos2  (b/a)2 sin2 1/2 (3.8)

According to the geometrical theory of diffraction, the first-order

scattered field at either of these points may be written in the form

- ( b a) - 12/w re i exp(ikr + iv) (3.9)

where r - the divergence factor

e incident electrical field in terms of the base vectors

A A A

B , And N (see Appendix A.1)

7- the phase delay.

20



The divergence factors rI and r 2 associated with the rays backscattered

from PSI and PS2 can be calculated by using Equations (A, 3.1) and (A.3.2)

in the Appendix, with pt --- _, g n/2, dm-kxsinB cos 

Aa*' A

+ y sin 0 sin + z cos 0. The results are

rr r. = (- sin )1/2

L Li

The column vectors for the incident wave (ai)pS1, and (e )PS2 are

expressed in terms of the local base vectors., N4, B , at ,,, and

T2, N2, B2 at PS2, raspectively. The local base vectors are illustrated

in Figure 3.1, and are defined by

T . -T2  - sinf + tCos
1 2

A A

A

N1- N - = x cos I+ Ysin 1

Bl 1 B2 --,^ (3.11)

For the incident field given in Equation (3.2), we have

(C)P Eos

E sin

21



(-+)p S2 - I l Cos e (3.12)

E ine

The diffraction matrices Ai and A2 for P and P are given by Equation
1 fo P 1 an S2r gvnb Euto

(A.2.2), (A.2.5.), and (A.2.1) in the Appendix, with

w i/2

a e'a O for 1

and
a w e' = -0 forA 2  . (3.13)

The diffraction angles a, e1 jor P and PS2 are illustrated in Figure

3.2. Thus, the diffraction matrices are

-1- 0 0sin 0

A1 2 0 1 + C o.2 e 1 iin n s eCose

0 i-n e sin e cos s e) sine 

(3.14)

22
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-1 + 0 0

+co 2 0 1 + ssn c coo

2 0 ) (++s.n inO0

=22

0 " + s n e o sin2 e

(3.15)

The phase delay 'F1 and I I for scattering fields at P and PS2 are

2kA in e(3.16)

Substituting Equations (3.10), (3.12), (3.14), (3.15), and (3.16) into

Equation (3.9), we obtain j(bs) in terms of the base vectors TI. Ait

Bl, T 2 , 2 and B Witing (bs) in the form of Equation (3.2), it

follows that

- bIEf ka -3/2
a(. A [7 exp(i2ka sine iw/4)

+ (1 + 1 ) exp(-12kaA sin e + i f,/4
(8 ,0 0)

(3.17)

The above result does not apply when e - 0 and, therefore, it is not valid
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when the direction of the incident wave is close to the z-axis. From

a geometrical optics viewpolt, e - 0 defines a caustic where the

diffracted rays from all points on the rim of the plate converge. To

obtain the field in the caustic, we have to use techniques other than

the ray-optics method.

For the exact case of e - 0, the present problem can be solved

easily by using the physical optics method with the result

4 1 'ab , ( -0) (3.18)
. -EI

Since the first-order field obtained above is nonuniform in e,

we now introduce interpolating functions which yield results (3.17) and

(3.18) ;as particular cases. A correct interpolation could be obtained

by asymptotically expanding the exact solution of the scattering

problem, if such a solution were available. A discussion jimilar to

that performed by Keller for the circular edge would yield an axial

correction factor containing a combination of Mathieu functions.

For numerical purposes, it is preferable to introduce matching

functions which are more easily calculated, such as Bessel functions.
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We do rot p-:ettnd tbAt th!e forwla thus produced is the correct interpo-

latf.on, .u onl%; that it is sufficiently accurate for practical purposes.

A craparison between Equations (3.17), (3.18) and the corresponding

rezults tor a circul.ar disk, as well as an inspection of the interpola-

tion formula used for the circular disk, leads us to suggest the following

expression

S 4, (E J)(.... sin 8 - iJ2(2kaA sin . (3.19)

The above equation reduces to the result for the circular disk when

a - b, to the physical result Equation (3.18) when e-0, and to

Equation (3.17) plus terms O[(ka)"1/2I when the argument of the Bessel

functions is large with respect to a unit,

The result in Equation (3.17) is only the first-order solution for

large ka. The higher-order terw8 were discussed in a separate report,

but they will not be used in the present computations.

3.3 Th Semi-Infinite Elliptical Cylinder

First let us consider the case when the cylinder is of circular

shape, as shown in Figure 3.3. For the ineident wave given in Equation (3.1),
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, Figure 3.3. The semi-infinite circular cylinder
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the exact solution can be obtained using the Viener-Bopt technique [31,32].

Omitting the details, the final results are

E ka 00ein 2  ek i 8 2

" - :. J U " °in +  U
-e e22 n 2

(sin1O nM- L (ka cos 0)

is 2k d e in# n (ka sin e) Jl(ka sin e) A
_ _ n( U (3.20)

sin L n (ka coso )M(ka sin2e) 1.

in 1-

n

te e 2 ent o(ka sin) n(kasin e) 4 A
S)2(ka coos0)L (kacos) c 6

2 n

Si. 2ka e inoJ''kain e)J ka in ) n+ e in M A3.1+sin e n-m-an H(ka cooe) L n(ka coo6) 1 2  
. (.1

In the above equations,, the following notation has been used

n = L nk . (3.22)

The functions L () and M (n) are analytic in the upper half of the complex

w-plane and are defined by

Ln(w) L(-W) - M J, (1) ( )

M(w) Nn(-w) - 1 Jn(A) H(1)(A) (3.23)

2 n8
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where

) 2 w ImA > 0 for limk > 0

The above results are too complicated to be useful. (Note that L (w),
n

for example, is explicitly given by an infinite integral[30]). For high

frequencies, we may use the approximations

Ln(W), n (W) 1 , as ka + . (3.24)

Then the results in Equations (3.20) and (3.21) can be considerably I

simplified

-E ka [r Jf1 2k sin 0)1
cos sin2  Jo(2ka sin e) + sin e cos 2 2 a sin 0(2

-e Coka22 2 i
2(3.25)

S -E cos cos 21 J[(2ka sin 0) (3.26)

The above simple formulas are valid for all 0 except for e 'i/2.

The plane 0 - w/2 defines the shadow boundary for the specularly

reflected wave from the cylinder, and the expressions for (S0, S,) as

given in (3.20) and (3.21) no longer hold since they were derived from

simple saddle-point integration. Fortunately in the present application,

we are only interested in the case with 0 = 0 (head-on incidence) and its
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immediate neighborhood i.e., e < w/4. Thus.this shortcoming of the formulas

at 0 - f/2 has no effect in the later computations.

Because of its application to the radar return calculation from

an engine intake, the problem of scattering by a semi-infinite cylinder

has been studied extensively in the past fifteen years. For the first

time, a simple analytical formulahas been derived, i.e., Equations (3.25)

and (3.26). Bowfin in 1970 gave a similar result except that his

expression for S0 contains only the first form of (3.25) and therefore

is not valid for e - 0 and its neighborhood. For ka sin e >> 1, the

results in (3.25) and (3.26) are reduced to

1

1 Eh ka i
s,~-I j-~tl±--o-- cos(2 ka sin8-1/4 (3.27)
2Be Isin

which agree with the ray-optics expression derived by Ross in 1967.

As is well-known, the ray-optics expression is not valid in the caustic

region (e 0) which is ptecisely the case of interest iLn the present

study.

The cylinder considered above has a circular shape. By proper

scaling, an approximate formula for an elliptical cylinder (with a major
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axis a and winor axis b as shown in Figure 2.5), can be derived. The

scaling factor we have selected is the one between a cirrular plate

and an elliptical plate; it has been rigorously determined [3,4]. In

terms of the backscattered field, the use of the scaling factor leads

to this result:

(elliptical) ."~a /  (bs) (circular with radius aA) (3.28)

where (ak) can be considered as the "effective radius" for an elliptical

cylinder with

22 2A .coo * + (b/a) sin * (3.29)

and * is the azimuthal angle of the incident plane wave.

3.4 The Ogive

The geometry of an ogive is shown in Figure 2.6. The

scattered field from the ogive can be obtained by applying the opt#.cs

approach [1]. For the present problem, we are only interested in the

00region (90 - a) < 0 _ 900, where the scattering amplitudes arc given

by

S1/2

31 ne (3.30)e E 1
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4. TOTAL SCATTUR FIELD

4.1 Transformations of Coordinates

In the previous chapter, the backscattered fields from individual

components were found and the final results were expressed in term

of their respective local coordinates. To combine them properly for the

total scattered field, those results have to be transformed so that

they have a comon reference, namely the target-centered coordinate

system. Such a transformation is straightforward but quite tedious,

and a small mistake may crucially affect the final result. Therefore,

we will discuss various transformations in explicit detail. Our choice

of coordinate system is essentially the same as that used by Wright

except for some small variations.

For the tarset-centered coordinate system (TCS), the x axis is

alon. the longitudinal direction of the aircraft with the positive

direction pointing from the tail to the head of the aircraft (see

Figure 2.1). The positive y axis is directed to the left side of the

fuselage, and the • axis is along the vertical direction of the aircraft.

The other coordinate systems of interest are the local coordinate

M



systems (LCS) which are assigned to each component of the target. The

left wing is taken as the example which illustrates the LCS. The left

wing is approximated by a half of an elliptical plate. The origin of

the coordinate system is located at the center of symmetry of the ellipse,

and the x and y axes are the axes of symetry in which the y axis is the

major axis pointing to the left side of the target (See Figure 4.1).

The LCS's for the rest of the components are assigned in a similar manner.

The LCS is obtained by making a translation and three successive rotations

from TCS. Let xt, yt, and zt be the coordinates of the origin of the

local coordinate system referred to target-centered system, a be the rota-

tion angle of the LCS about its z axis, 8 be the rotation angle about its

new y axis, and y be the rotation angle about its new x axis (See Figure 4.1).

All three notations are defined in a right-hand sense. Let x, y, z be

the coordinates of a point in the TCS, and xt, y', z' be the coordinates

of this point in the local coordinate system. Then the coordinates of

the point are related by the following transformations:

Y 1 t12  t13]

St21 t22 t -y t  (4.1)

2 1 t 2 t3Jz z



x

O'originl of localI. coordinate system

(KttZt Oorigi of target
centered system

Figu te 4.1. Local coordinates for the left wing
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t t t x
21 31 t

y t1 2  t22  t3 2  Y + (4.2)

z t t t z
Lhere13 23 33

where

t con a Cos

t -sin a cos

t13 - - sin y

t 21 -- sin a cos o + coo a sin 0 sin y

t 22 - cos a coo y + sin a sin 0 sin y

t2 - coo 0 sin y

t31 - sin a sin y + cos a sin B cos y

t32 - - cos a sin y + sin a sin B cos y

t - cos 'cos y . (4.3)

In the above transformation, the three successive rotations a, 0,

and y have to be made in the order as stated; that is, a first, B second,

and y third. The corresponding values of xt, Yt, zt, a, B, and y for

components of our targets are listed in Tables 2.1 and 2.2.
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Any point in space can be given In spherical coordinates by (R, e,#)

with respect to some coordinate system. The angles 0 and # which are

the spherical coordinates of the radar in the TCS are usually veferred

to as the aspect angles. The aspect angles are shown in Figure 4.2.

The scattered field for the nth component of the targets can be

calculated when the aspect angles e ) , ) for the component in the

LCS are known. For the given aspect angles 0 and f in TCS, the aspect

angles e(n) *(n) in the nth LCS can be calculated as follows

an) n)arctan (4.4)

1 2 2d

arctan (4.5)

Io t t t
iy t1 t2 t2 sin sin e . (4.6)

o. .31 t32 '3. o

The transformation in Equation (4.6) is valid when

2 >> (x + z 21/2 (4.7)
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(RtoV)

Observation~Point

II

Figure 4.2. Aspect angles wvr.t. target centered coordinates
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where R Is the range of the radar referred to the TCS.

In calculating the backscatter A field from each component, it is

necessary to transform ths incident field given in the TCS to that in

the LCS, and also., to transform the backscattered field in the reverse

direction.

For an incident plane wave in Equation (3.1), the electric field

amplitude is expressed by a column vector

ISO0 (4.8)

which is vritten in terms of base vectors In spherical coordinates.

In the nth LCS, It becomes

()} V T S (4.9)

where

sin e cos cos cos -sin

S- sin e sin* coo 4 sin* coo, (4.10)

cose -sin e 0

38

------------------------ LOOM-



t11 t12  t 13

T t 22 t 23  (4.11)

- t31  t32 t32

IL

with t 's as in Equation (4.3) and

sin e(n) Cos (n) sin 0 (n) sin *(n) Cos 6 (n)

U Cos 8(n) cos * in s(n) (n) sin *(n) -sin e(n) .(4.12)
-sin * (n) cos f (n) 0

Note that the translation of the origins from the target centered coordinates

is neglected here. Similarly, for a given (bs),(n-t) in LCS, the

E(bs),(n) in TCS is given by

1(bs),(n) W 8 ' T' U' j(bs),(n-1) (4.13)

where U', TI, S' are transposes of matrices U, T, Srespectively, and

1 W
1 W2

U= 0 1 0 (4.14)

0 0 I
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with

nI -- xt cos Cos - ytcos 0 IU*- at sine0

W2 a -xt sin + yt cos (4.15)

The matrix V takes into consideration the amplitude shift of the scattered

Lield of the nth component caused by the origin shift of its LCS from

the origin of the TCS. The phase shift of the scattered field of the

component caused by the origin shift is given by

*(n) m 2k(x t sin cos, + yt sin O sin, + z t cos 6). (4.16)

In Equations (4.15) and (4.16), the point (xtYtmt) represents the

position of the LCS origin referred to the TCS, and the angles e and

are the aspect angles in the TCS.

4.2 Shadowi Effects

In the present study, we used the ray-optics approach for the

determination of the scattered field except for the case of caustics;

the scattered fields are generated exclusively from the scattering at

the "scattering centers." For a given incident angle, a scattering

center of a component may or may.not Oe shadowed by other components of
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the aircraft. If it is shadowed, there is no contribution from that

scattering center to the total scattered field; otherwise, its entire

contribution will be included. To ac' ount for the "all-or-nothing"

shadowing effect, we will introduce a tas4;i modulation function for

each component of the aircraft.

1 if (e) is in the visible region of the component

G(n)(elf ) SO
0 if (el$) is in the shadow region

(4.17)

'I
where e, 0 are the aspect angles in the TCS. As an example, the

shadowed and visible regions of the left wing of the BQM-34A target drone

are illustrated in Figure 4.3 when 6 - 900. For the incident angle
t

greater than -150 and less than 1000, the left wing is in the visible

region [Gn(ef) - 1]; otherwise, it is in the shadow region

[G (n)(e,) - 0]. The shadow and visible regions of the components of

our targets are listed in Tables 4.1 and 4.2.

4.3 Computational ProCedure

The scattering parameters of interest, as finctions of aspect

angles, are computed by using the following procedure:
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Shadow Rgo

Visible Region

A
y

Figure 4.3. The shadowing region of the left wing of BQ*-34A target drone
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1) Select aspect angles e and * in the TCS, and an incident field

in the form of Equation (3.1).

2) Transform 0 and * to localaspect angles 0(n) and *(n),using

Equations (4.4) and (4.5).

3) Transform incident field to local coordinates using Equation (4.9).

4) Compute backscattered field using one of the equations in

Chapter 3.

5) Take into consideration the shadowing effect, and multiply the

amplitude of the scattered field by a proper modulation function

using Equation (4.17).

6) Transform the backscattered fteld to the TCS.ubing Equation (4.13).

7) Repeat steps 2) through 6) for all components.

8) Compute total scattered field in TCS by using

]I(BS) j ,(BS),(n) • exp[to (n)l

A-1

X: where 0(n) is the phase shift in Equation (4.16).

9) Compute scattering parameters using Equations (2.8) and (2.9).
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4.4 Digital Computer Hadeling of Surfaces

From the above discussion, it is clear that the two key steps in

using the present ray-optics approach are (1) locating of scattering

centers, and (ii) determining which, if any, of the scattering centers

are shadowed by other components of the target. For simple geometrical

bodies, such as an ellipsoid, plate, cylinder, etc., this task is not

too difficult. For more complex gometrtcal bodies that may be con-

sidered later, it does not seem to be analytically manageable. In the

past contract'period, we have investigated a computer-aided modeling

technique, which promises to generate arbitrary surfaces and determine

scattering centers and shadowing effects in an automatic fashion. Some

of the preliminary results are given below.

A. General Approach& to Mudelin a Thre-Space Surface

Two basic methods exist for digital computer modeling of surfaces.

The surface may be represented by some analyLical function describing

the entire locus, or it mey be represented by a data set describing

individually sampled points on the surface. In the course of several

years of research intce eiital display of three-dime vonal solids, the

latter method has been chosen as the more flexible and efficient.
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The general madeling, techniques employed in this work approximate

a three-space surface by a data set consisting of an ensemble of planar

polygons whose vertices lie on the surface of interest. These polygons

may have any number of vertices but must, however, be convex. For this

reason triangles or quadrilaterals are most commonly used.

Each polygon is represented by a data set which includes the

triplets of the vertices, a reflectivity coefficient, and the three

coefficients of the general form of the plane in which the polygon

lies. These three coefficients are equivalent to the'magnitudes ofII

the components of a unit vector normal to the polygon.

Once a surface has been modeled by a set of polygonal systems,

programs are available to display the surface in a variety of modes.

The simplest form of display consists of a "wire frame" or line drawing

of the surface. The surface is represented by displaying lines along

4  all the edges of the polygons in Figure (4.4). Algorithms are also

available for producing a grey-scale solid rendering of the surface with

all hidden lines and planes removed [Figure (4.5)]. These algorithms

determine all plane intersections, all hidden or shadowed planes, and

the radiant flux falling on each plane because of a movable radiation source.

4 47
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These algorithm essentially model the optical properties of the surface in

question and then perform a perspective transformation for display purposes.

Several methods are available for constructing the polygonal data set.

Measurements may be taken directly from the surface to be modeled, or

data points may be generated from an analytical expression for the surface.

B. Polygonal Modelng of a Surface Described by a Function of Two

Variables

A software surface medeling, system has been developed for operation

on the CDC 1604 computing system of the Coordinated Science Laboratory

(CSL), University of Illinois. Parts of this system will assemble a

polygonal data set from arrays of computed triplets lying on a given

locus. The triplets are computed from the analytical expression of the

surface in question. The values are packed in three two-dimensional

arrays; for X, Y, and Z. The points are related positionally. Each

possible set of four adjacent pointg is examined to generate plane data;

the (i,j), (i + 1,J), (iJ + 1), and the (1 + 1,j + 1) elements of the

array. For every foux-point set, two pairs of triangular planes are

possible. That pairing is chosen which produces the smaller dihedral

aagle between planes. This gives the smoothest approximation to the surface.
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The system then computes the normal coefficients and the user may supply

a reflectivity coefficient. The data set is written on magnetic tape in

a format compatible with the display algoritbms. This data set may be

inputted to the display systems or used for further calculations.

This method gives a very good approximation to the surface.

However, a few precautions are necessary. First, the function must be

adequately sampled. Sampling frequency is determined by resolution

requirements. The finer the sampling, the better the fit of the polygon

function to the surface. Second, the samplin&, should be finer at points

of greatest curvature. The polygons should not be of equal area, rather

the difference in normal vector orientation between two polygons should

be constant, that is, the angle between any two polygons should be the

same.

For many functions it is difficult if not impossible to analytically

derive expressions for curvature. Even when possible, this technique may

not be desirable because of excessive computation time. A general procedure

for sampling a function so as to produce a polygonal model reasonably

sensitive to changes in curvature is to simply sample the function in

a regular rectangular grid in the x, y plane. This has the effect of
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producing larger planes as the angle between the x, y plane and the tangent

plane increases. This makes the polygon area approximately proportional

to the radius of curvature in the region of the polygon.

A computer program has been developed to sulate aircraft surfaces

by an arbitrary number of ellipsoidal surfaces. Each ellipsoid is

specified by some function z - f(xy). The coordinate system is centered

on the aircraft model. It is assumed that the function contains terms

for rotation and translation which position the ellipsoids correctly

with respect to each other. The program developed has been used for

extensive modeling of an aircraft composed of 8 ellipsoids. The results

are shown in Pigures (4.6) and (4.7).

so
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Figure 4.4. A "wire frame" display of an ellipsoid

I I

Figure 4.5. A polygonal model display of an ellipsoid
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Figure 4.6. An aircraft modeled by using six ellipsoids (top view)

Figure 4.7. An aircraft modeled by using eiht ellipsoids (top view)
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5. NMEOUCAL RESULTS

T, The numerical computattons have been made for the two aircrAft:

T-33, and BQM-34A. In each case, the RCS, azimuth error, and

elevation error are calculated as a function of the azimuth angle

at an increment of 1 degree, while other parameters such as elevation

angle 0, frequency, and polarization are fixed.

~5.1 T-33 Aircraft

51 3In reference [33], the RCS of a one-half scale T-33 model was

measured by a nanosecond short-pulse radar. Its data provide a check

for the present computer program. In Figures 5.2 and 5.3, the experi-

mental data and the theoretical prediction are presented when the

frequencies are 8.8 GHz and 2.9 GOz, respectively, with vertical polari-

zation (H e 0) and 8 w I/2.

It should be noted that the data given in reference [33] were

Lmeasured from a half-scaled model, while the results presented in

MT Figures 5.2 and 5.3 have been increased 6 db to compensate for the

scale factor. The agreement between the experimental and the theoretical

results is reasonably good except in the neighborhood of 0 - 0 (head-on),4

__,__,__ , .__ ,_+________ _ -. - + -. .. 5
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and * - 1800 (tail-on). In the head-on, or tail-on directions, the

main contribution to the scattering comes from the engine duct. The

fact that good agreement is not obtained in these two directions indi-

cates the need of an improved model for the engine duct. This task will

be carried out in the next contract period.

In addition to the case 0 = 90 as discussed above, the experi-

mental data for the T-33 are also available when the aircraft is tilted

at an angle T from the horizontal plane (Figure 5.1). The corresponding

aspect angles (0,0) due to such a tilt can be found from the transfor-

mation in Equation (4.1) with 0 - -Y, a - 0, and y = 0. For the frequency 8.8 GHz

with T - 5 , and for the frequency 2.9 GHz with Y- 5 and T - 10 , the

experimental and the theoretical calculations are presented in

Rgures 5.4, 5.6, and 5.7 respectively. The agreement is reasonably good,

but not as good as that presented in Filpres 5.2 and 5.3. This is due

to the facts that the experimental model of the T-33 is more complex

in structure than the model described in Table 2.2, and that the difference

in structures becomes more predominant when the aspect angle 0 is

different from w/2. The accuracy can be improved if more components are
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used in Table 2.2. However, this can be achieved only at the expense

of computational labor.

5.2 BQW34A Target Drone

This aircraft was also studied by Wright who used ellipsoids to

A approximate the various components of the aircraft. In Figures 5.7, 5.8,

and 5.9, we present a comparison between his results and ours for the

P RCS, e0, and e* as functions of the azimuthal angle * at frequency 1 GHz,

with vertical polarization incidence (E0 a 0), and e - w/2. The

agreement is good except in the neighborhood of head-on and tail-on

directions, because the scattering from the duct is taken into consideration

in our computation (See Sections 3.3 and 3.4), while it is not included

in Wright's computation.

To study the frequency dependence of the scattering parameters,

more computations were made by changing the frequency from 1 GHz

(Figures 5.10, 5.11, and 5.12) to 5 GHz (Figures 5.13, 5.14, and 5.15),

and to 8 GHs (Figures 5.16, 5.17, and 5.18), while the other parameters

are kept the same as the ones used in Figures 5.7, 5.8, and 5.9. As

s, may be expected, the RCS is not frequency-sensitive in the broadside
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direction. In that direction, the main contribution to the scattering

cones from the fuselage, which is modeled by an ellipsoid in the present

study. As given in Equation (3.4), the backscattering from an ellipsoid

is independent of frequency.

IN

I
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AA

-ground- fixed polef

ri e5.1. T-33 tilt angle rotation convention
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average of the theoretical computaton. The dotted line

represents the 50-median of the experiment reported in
reference [33].
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Fig-re 5.5. RCS in db per square MMeter of a full-scalec T-33 aircraft
' as a funct~on of az~imuth angle for a tilt angle - 50,
" for a vertically polarized incident plane wave -E 0),
x, and at frequency 2.9 GHz. The solid line represents the

5°-average of the theoretical comput~tion. The dotted
" line represents the 5°-median of the experiment reported

tin reference [33].
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Figure 5.8. Azimuth error (e ) in meters of the BQH-34A drone as a
function of azimath angle * for a fixed e- 9 0 , for a
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Figure 5.10. RCS in db per square meter of the BQM-34A drone as a
function of azimuth angle * for a fixed 6 - 900 , for
a vertically polarized incident plane wave (E6  0),
and at frequency 1 GHz
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Figure 5.12. Elevation error (e ) in meters of the BQM-34A drone as a
function of azimutk angle * for a fixed e - 900, for a
vertically polarized incident plane wave (E. * 0), and
at frequency 1 GHz
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Figure 5.14. Azimuth error (e ) in meters of the BQH-34A drone as a
function of az Q th angle * for a fixed e - 900, for a
vertically polarized incident plane wave (E. - 0), and
at frequency 5 GHz
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Figure 5.16. RCS in db per square meters of the BQM-34A drone as
a function of azimuth angle t and a fixed e = 90°, for
a vertically polarized incident plane wave (E 0),
and at frequency 8 GHz
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6. CONCLUSION

In this work, we have derived a relatively simple and analytical

model for a complex airborne target. The results for the radar scattering

parameters, i.e., RCS and angular scintillation, are given in terms of

explicit simple functions and therefore can be calculated in an efficient

manner with the aid of a computer. To test the accuracy of our model,

the theoretical results are comparid with the experimental data for T-33

aircraft. The agreement is generally good (within several db) except in

the head-on and tail-on directions. In these two direction, our simple

model using a semi-infinite cylinder with an ogive as the engine

termination to approximate the engine duct is not adequate; and future

work to develop a more realistic model is needed.
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APPENDIX

A.1 Diffraction Matrix for a Wedge

Consider a perfectly conducting wedge of half-angle 9 whose edge

coincides with the z axis of a Cartesian coordinate system (x, y, z) and

whose surfaces are defined by the equations y - ± x tan 9, x > 0,

and -= < Z < = . The geometry of the wedge is shown in Figure A.1.1.

The problem of a plane wave incident or on a plane perpendicular to the

Z axis with either its electric or magnetic vector parallel to the edge

is a classic one; the exact solution is known, and from the basic results

it is a tzivial matter to deduce the corresponding solutions for plane

waves incident at an angle ir-5 to the Z axis.

According to Keller's geometrical theory of diffraction, we define

a set of edge fixed base vectors T, N, aqd B, where T is a unit vector

parallel to the edge, N is a unit vector normal to the edge and pointing

away from the wedge, and B is the unit vector binormal to the edge and

pointing into the shadowed half space. The direction of T is chosen

such that T - N x B in a right-handed system. In general, we choose
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Figure A.1.1. The geometry of the wedge
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A A *
T=Z

-- x cos6 + y sin6 (A..1)

B = -x sin 6 - y coo 6

where 6 is arbitrary (see Figure A.1.1). If the incident field is

Sexp (A.1.2)

the diffracted electric field at points far from the edge and away from

all geometrical optics boundaries can be written as

d Ad m , iNA4>1l
ad 1/ ~ ep(ikd *r) (A.1.3)

sin 0(21rkr)

where B is the angle between T and incident direction i, r is the

distance from t'e point of diffraction on the edge to the observation

point, and k Is the wave number. The incident and diffracted rays are

on opposite sides of the plane which is normal to T and which contains

the diffraction point PO; their projections on this plane form angles

a and e' with -3 (see Figure A.1.1) where

-(w12) + 0 + 6 < <i < (42) + 6

-(w/2) + A + 6 < 8' < (3n/2) a + 6

0 < (.l.)



The vectors e and ;d are related by

'd ~i
e *Ae (A.1.5)

where

-(X -y)

- (x - y) cot 8 sin 0' (x + y) cos e' cos a (x + y) cos e' sin a

- y) cot 0 cos 0' (x + y) sin e' cos a (x + y) sin 6' sin a

(A.1.6)

x- in [cos -coo (l + )"1
n n n U +

I it 1 ,)-1

y U i sin 2 [cosI + cos n (w + 26 - a - e)] (A.1.7)

with

n *Z(l=- .(A.l.8)

Both e and e are coluan vectors with coumponents along the base vectors

T, N, and B.

A.2 Diffraction Matrix for a Thin Edie

The perfectly conductiaS half plane shown in Figure A.2.1 is a

special case of the wedge in Figure A.1.1, with half-angle Q equal to

zero. We define the base vectors T, i, and B as shown in Figure A.2.1.
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The incident and diffracted field can be written in the form of

Equation (A.1.2) and Equation (A.1.3). The vectors e and e are related

by

'd .ied = Ae (A.2.1)

where

-(-x + y)

A " (-x + y) cot o sin 8' (-x.- y) cos 9' cos a (-x - y) co e' sin a

(-x + y) cot 0 coo 8l (-x - y) sin 8' coo a (-x - y) coo e' sin a

(A.2.2)

with

Y1<a <2

(A. 2. 3)

2- - 2

If the observation point p is not near the boundary of the shadow region,

where O' -a + w , i.e., if

jcoose 2 - 2rr2 *I u 0 > > 1 ,(A.2.4)
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then

1
y =-,(A.2.5)

2 Co 2

If p is not near the boundary of the reflected field, where e' -a,

i.e., if

sin e i 2kr sin 8 >> 1 (A.2.6)

then

1 1 n (A.2.7)
2 sin-+

A.3 The Divergence Factor for the Diffracted Ray from a Curved Edge

By applying the geometry theozy of diffraction, the divergence

factor for the diffracted field from a curved edge can be written as

r (A.3.1)

where p is the principal radius of curvature of the wave fronts

diffracted by the edge and S is the distance from th . edge to the

observation point. The radiLs of curvature of the wavefront is 4
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0 G 2 (A.3.2)
(d- i) * n

where p' is the radius of curvature of the edge, 0 is the angle between

the incident ray and the tangent to the edge, d Is the unit vector in

the direction of the diffracted ray, and n is the unit vector in the

direction of the principal normal to the edge.

The principal normal to an edge is the normal lying in a plane

containing the edge at the location of interest.
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